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Giacovazzo. Replacing in the distributions the 
Cochran concentration parameter of a triplet by the 
corresponding P10 parameter of the same triplet 
remarkably improves the behaviour of the distribu- 
tions although further improvements are needed. 
Their maximization requires better probabilistic 
theories; in particular, higher efficiency for the esti- 
mation of negative quartet invariants. 

The tangent formula (including triplets and quartet 
contributions) based on the mathematical approach 
of Giacovazzo proved to be the only one suitable for 
phase expansion and refinement. The formula was 
included in a random approach to structure determi- 
nation. The additional use of quartets was not helpful 
owing to the limited accuracy of quartet estimates. 
Replacing in the triplet contribution the Cochran 
concentration parameter by the corresponding P10 
parameter remarkably improved the efficiency of the 
phasing process. But again the combination of P10 
estimated triplets with quartets proved less efficient. 
The reason for such a failure is ascribed to the limited 
accuracy of the probabilistic formulae estimating 
quartets. A substantial improvement of such formulae 
is considered a necessary condition for the success 
of the active use of the quartets in the phasing process. 

The authors thank C. Chiarella for technical contri- 
bution. 
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Abstract 

A novel method of function minimization that com- 
bines the power of the diagonal approximation to the 
normal matrix with conjugate directions is described. 

0108-7673/92/060912-05506.00 

This method approaches closer to the local minimum 
than the methods that are commonly used in 
macromolecular refinement. The weaknesses of the 
current methods are analyzed to explain the advan- 
tage of the conjugate-direction method. 
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1. Introduction 

A persistent problem with macromolecular 
refinement is that the R factors of the final models 
are higher than those obtained in small-molecule 
structures. Over the last ten years, even though the 
same basic type of model is used to represent the 
molecule, average R factors have decreased from 
about 20 to 16%. The difference is due to the sophisti- 
cation of the refinement methods used. It seems likely 
that further improvement could be achieved if more 
powerful techniques were available. 

In pursuit of this goal, a modification of the con- 
jugate-gradient method of function minimization 
(Fletcher & Reeves, 1964) has been developed that 
uses more information about the function being 
minimized than any method currently used. In par- 
ticular, it uses explicit knowledge of the diagonal 
elements of the normal matrix together with implicit 
knowledge of the off-diagonal terms learned from the 
history of the refinement to determine better search 
directions in the parameter space. This method can 
determine a set of parameters that agree better with 
the observations in less computer time than the 
methods described previously. 

2. Overview of function minimization 

The theoretical basis of all refinement methods used 
in the latter stages of high-resolution refinement are 
the same. The analysis begins by making a Taylor- 
series expansion of the function being minimized 
about the current estimate for the values of the param- 
eters of the model (Xo). The Taylor-series expansion 
is 

f (x)  =f(Xo) + gr(xo)d +½dTN(xo)d + . . . ,  (1) 

where g(x) is the gradient of the function, N(x) is the 
second derivative or normal matrix, d is the shift 
vector that takes xo to x and the superscript T denotes 
the transpose. The higher-order terms are always 
assumed to be negligible. 

To find the value of x where f (x )  is minimal we 
take the derivative of (1) with respect to x and solve 
for d when g(x) is 0. The result is 

d = -N-~(Xo)g(x0) (2) 

and 

X=Xo+d. (3) 

x defines the minimum in all cases where the higher- 
order terms are in fact zero and where N is positive 
definite, which is always the case in this application. 

3. The macromolecular problem 

Equations (2) and (3) require that the normal matrix 
be calculated and inverted. This matrix is of size n x n, 

where n is the number of parameters in the model. 
For many macromolecular structures this number is 
of the order of 10 000. The calculation and inversion 
of such a matrix is impractical. To refine large models 
a method must be chosen that avoids these steps. 

The authors of the several commonly used 
refinement packages have chosen different ways to 
avoid this problem. The program X-PLOR (Briinger, 
Kuryan & Karplus, 1987) uses the method of simu- 
lated annealing in the early stages of refinement. TNT 
(Tronrud, Ten Eyck & Matthews, 1987) and X-PLOR 
(in later stages) both use the conjugate-gradient 
method. SFRF (Agarwal, 1978) and EREF (Jack & 
Levitt, 1978) both use a diagonal approximation 
to the normal matrix, while CORELS (Sussman, 
Holbrook, Church & Kim, 1977) and PROLSQ 
(Hendrickson & Konnert, 1980) use a sparse-matrix 
approximation. 

4. Review of the conjugate-gradient method 

Without complete knowledge of the normal matrix, 
minimization of a quadratic function requires 
repeated cycles. In each cycle a shift vector is chosen 
(dk for cycle k) and the minimum along that direction 
is found with a line search. The minimization of a 
function along a direction reduces the problem to 
one parameter, called a. The new values for the full 
set of parameters (for cycle k + 1) are 

X k ÷  1 ~-  X k "-1- O l k ÷ l d k +  1 • (4) 

The value of Ol~k+ 1 is set to the value that minimizes 
f(xj+ak+~dk+l). It defines the minimum along the 
shift vector dk+~. 

The particular set of directions searched determines 
the rate of convergence. For example, if one chooses 
to search along the axes of parameter space, first 
varying the x parameter of the first atom, then the y 
parameter and so on, the minimum can only be found 
after a number of cycles many times greater than n. 

Many cycles are required when one parameter at 
a time is varied because the parameters (and therefore 
the shift directions) are interdependent; thus, in sub- 
sequent cycles, previously searched directions must 
be searched again. The number of cycles could be 
reduced if a series of directions could be identified 
that were independent. This independence is 
described mathematically as the direction vectors 
being conjugate to the normal matrix (Luenberger, 
1973), which is defined explicitly as d]'Nd,,, = 0 when 
l # m .  

A conjugate-direction method is one in which a 
series of directions are devised that are conjugate 
with respect to the normal matrix but do not require 
the normal matrix for their determination. In the 
particular conjugate-direction method called the con- 
jugate-gradient method, the direction vector for cycle 
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k + 1 is determined from 

dk+l = --gk + flk+ldk (5) 
T T 

~ k + l  "~- gk gk/gk- lgk- l ,  (6) 

where flk+~ is chosen to ensure that d k +  1 is conjugate 
to all previous directions, do and 131 are defined to be 
0 and 0, respectively, which results in the first cycle 
being a steepest-descent cycle (dl = -go) .  

5. Limitations of the conjugate-gradient method 

The fundamental limitation of the conjugate-gradient 
method is that it requires, in general, n cycles to reach 
the minimum. We need a procedure that will perform 
most of the function minimization in the first few 
cycles. 

The eigenvalues of the normal matrix (Leunberger, 
1973) provide information about how a method will 
refine parameters in the early cycles. The normal 
matrix describes the shape of the minimum of the 
function and its eigenvalues determine how oblong 
the neighborhood of the minimum is. Because the 
normal matrices for the functions usually minimized 
in macromolecular refinement are nearly diagonal, 
there is a close correspondence between the eigenvec- 
tors and the parameters of the model. For a perfectly 
diagonal normal matrix, the eigenvectors are the axes 
of parameter space and the diagonal elements, or 
curvatures, are the eigenvalues. 

The method of steepest descent works best when 
all the eigenvalues or diagonal elements are equal. If 
they are not equal, the parameters with the greatest 
curvatures dominate. The conjugate-gradient method 
must infer the differences in curvature from the his- 
tory of the search but this takes more cycles than we 
give the method in practice. 

This problem is especially serious when positional 
parameters are compared to thermal parameters. The 
curvatures for positional parameters are much larger 
than those for thermal parameters; therefore, 
refinement of thermal parameters is blocked by the 
influence of the positional parameters. This effect is 
usually avoided by refining thermal parameters with 
the positional parameters held constant and vice versa. 

A more intractable problem arises because the cur- 
vatures associated with numerically large thermal 
parameters are much smaller than those of smaller 
thermal parameters. In all models produced by 
refinement using the conjugate-gradient method and 
methods that simplistically incorporate curvatures, 
the large thermal factors are poorly refined and prob- 
ably should have even larger values than those 
obtained during the refinement process. In addition, 
atom types with many electrons, such as sulfur and 
iron, have large curvatures. The thermal-factor shifts 
of these atoms will be overestimated, resulting in an 
oscillation about the correct value. 

6. Improvements in the conjugate-gradient method 

The conjugate-gradient method uses the steepest- 
descent method to produce its first shift direction or 
'seed' direction. The rate of convergence of early 
cycles can be improved if a seed that incorporates as 
much information as is practical about the function 
is used. We would like a direction that includes com- 
pensation for the differences in the eigenvalues of the 
normal matrix. Since in X-ray crystallography the 
diagonal terms of the normal matrix dominate, a 
diagonal approximation to the normal matrix pro- 
vides a powerful and quick alternative to the steepest- 
descent method of generating shift directions. In this 
procedure the search direction is calculated by 

dk+l -1 = --Nd, kgk (7) 

where Na, k is the diagonal approximation to the nor- 
mal matrix for the parameters of cycle k. For the 
fastest rate of convergence, this shift vector should 
be used as a seed for conjugate-direction searches. It 
is not clear, however, how one should calculate fl 
in (6). 

The refinement problems that we address are the 
wide range of magnitude of the eigenvalues of the 
normal matrix and the existence of off-diagonal terms. 
If we could choose a different set of parameters for 
which the normal matrix was simpler, the rate of 
convergence would improve. Ideally, one would 
choose a system of parameters such that all the eigen- 
values were equal and all the off-diagonal elements 
were zero; then one cycle of steepest-descent minimiz- 
ation would suffice. 

Let us assume that we have determined a matrix 
(M) that will transform the usual crystallographic 
parameters into such a set of parameters (x'). The 
transformations between the familiar parameters and 
the new ones will be 

x' = Mx,  x = M-~x ', 

g ' =  M - l r g ,  g = MTg ', 

N' = M - l r N M  -1, N = M r N ' M .  

(8) 

We can perform Fletcher-Reeves conjugate-gradient 
minimization on the function using this new param- 
eter space. The equations will be the same (4)-(6) 
but with primes added, 

and 

X~+I = X~+ O~k+ld~+l, (9) 

d~+t =-g~+fl~+ld~ (10) 

_ T t ~ _ I T  ,..r 
~ k + l  = ~ k g k / ~ k - l ~ k - l .  (11) 

Instead of working with the x' parameters we can 
substitute back to the original x parameters. The 
resulting equations are 

--1 r Xk+l=Xk+Olk+lM dk+l (12) 
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and 

M-ida,+1 _M-1M-1Tg~,+o, ~ - l a ,  = ~k+l~-- Uk (13) 

gffM-1M-1Tg k 

fl~,+l -- gkr_~M_lM_l rgk_ 1 . (14) 

In these equations the shift vectors d' are all premulti- 
plied by M -~. It would be simpler to eliminate this 
complication by simply defining d = M-ld  '. The final 
equations for conjugate-direction refinement, derived 
from recombined parameters, but operating on the 
'native' parameters are 

Xk+l : Xk "[- O~k+ ldk+ 1, (15) 

dk+l=--M-lM-1Tg'k+fl'k+ldk (16) 

and 

fl'k+l:g~M-~M-ITgk/g~-lM-'M-IT gk_l. (17) 

At this point, the matrix M is undefined. The 
optimal choice for M would require that M -~ TNM-~, 
the normal matrix for the new parameters, is equal 
to the identity matrix. To calculate the optimal M we 
need both the normal matrix and its inverse; thus, 
we made no gains in computational efficiency over 
the full matrix method. However, if we recognize that 
in crystallography N is almost diagonal we can set 

1/2 1 1T M = Nd • Then M -  M-  in (15), (16) and (17) may 
be replaced by Nd 1. Making this substitution, we 
obtain 

and 

dk+l = --Ndlgk +/3'k+ldk (18) 

/3k+1 T -1 T =gkNd gk/gk-lNdlgk-1. (19) 

The seed direction (dl when /3~,+~ =0  and do=0) is 
now the shift calculated from the diagonal approxi- 
mation to the normal matrix, as we desired. In addi- 
tion, however, we have an equation for/3. In summary, 
we have a minimization method where the diagonal 
terms of the normal matrix are explicitly included 
and the off-diagonal elements are dealt with via a set 
of conjugate directions. 

Agarwal (1978) suggested a similar method; 
however, his equation for /3 was incorrect. In the 
present nomenclature, his proposal for/3 was 

/3 =d[dk/g 'T-' (20) k gk" 

In conjugate-gradient refinement /33 is equal to the 
ratio of the length of the gradient at point k divided 
by that length at point k - 1 .  Because k should be 
closer to the minimum than point k -  1,/3 should be 
less than unity. An estimate of Agarwal's /3 can be 
achieved by examining his/3 for cycle 2, which is 

/32=g'oT g~/g 'T-'~ g~. (21) 

As before, the parameters after cycle 1 should be 
closer to the minimum than the starting parameters, 

resulting in /32 > 1. This value results in the undesir- 
able outcome that the previous cycle's direction is 
considered more important than the direction calcu- 
lated from the current parameters. This now explains 
why Agarwal found it necessary to place an empirical 
upper limit of 0.4 on /3. The value of 13 calculated 
with (19) typically falls between 0.5 and 0.9. The 
empirical value of 0.4 falls closer to the typical value 
than either setting/3 to zero [and using (7)] or using 
the equation of Agarwal (1978). 

7. Some comparisons 

Parallel-refinement runs were performed to compare 
the convergence properties of the four types of func- 
tion minimization described in the text. These 
methods are steepest descent (SD), conjugate 
gradient (CG), diagonal approximation to the normal 
matrix (also called 'gradient over curvature' or GC) 
and the new conjugate-direction (CD) method. The 
test structure was the thermolysin-phosphoramidon 
inhibitor complex (Weaver, Kester & Matthews, 
1977) using data collected between 20 and 2.3/~ 
resolution (a total of 13 730 reflections). The starting 
model was the 'native' coordinates of thermolysin 
(Holmes & Matthews, 1982) with a crude phos- 
phoramidon model appended and displaced solvent 
atoms removed. The starting model, which contained 
a total of 2637 atoms, was known to contain a number 
of errors. The initial R factor was 21.7%. 

Refinement was carried out using the TNT refine- 
ment package (Tronrund, Ten Eyck & Matthews, 
1987), modified to include the new conjugate-direc- 
tion method as an option. [The crystallographic 
portions of the diagonal elements of the normal 
matrix were calculated by the method of Agarwal 
(1978)]. All four methods were run with the thermal 
parameters held constant because the refinement 
methods that do not use curvatures cannot simul- 
taneously vary both positional and thermal param- 
eters. Separate tests were made to compare GC and 
CD refinement in which both positional and thermal 
parameters were allowed to change simultaneously. 
The only differences between these test runs were the 
set of parameters varied and the method used. All 
other aspects, such as weights, were identical. The 
results of these tests are displayed in Fig. 1. 

The methods that use curvatures (GC and CD) are 
superior to the methods that do not (SD and CG). 
After 15 cycles of refinement, the conjugate-gradient 
run is similar to the 'gradient-over-curvature' method 
because the diagonal elements of the normal matrix 
for the positional parameters are all approximately 
equal and the conjugate-gradient method can 
accommodate their differences relatively quickly. 
However, this is not the case for all types of param- 
eter; shifts in B factors that are numerically small 
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and  n u m e r i c a l l y  large have  different  effects on  the 
va lue  o f  the  func t ion .  

The  c o m p a r i s o n  be tween  the run  of  g rad ien t -over -  
curva ture  re f inement  and  the  run  of  con juga te -d i rec-  
t ion  re f inement  in wh ich  bo th  X Y Z  and  B values  
were var ied  shows the c lear  super ior i ty  o f  the new 
method .  The  R fac tor  o f  the mode l  p r o d u c e d  by 20 
cycles o f  con juga t e -d i r ec t i on  re f inement  was 13.2% 
and  still fa l l ing,  wi th  good  geomet ry  ( b o n d - l e n g t h  
r.m.s, er ror  0.027 ,~ and  b o n d - a n g l e  r.m.s, e r ror  3.5°). 

The  r eason  the  new m e t h o d  p roduces  a lower  va lue  
for  f ( x )  is no t  because  the o ther  me thods  are s tuck 

Refinement Method Comparison 
6 I , , , , , , 4 

A -- Steepest Descent 

k • -- Conjugate Gradient 

5 l \ ~ k  [] --Gradient/Curvature 

~'~ 4 L ' ~ [ ~ , , . ,  II -- Conjugate Direction 

"~-~_~ ] 
"m - B - a _  | ~ - ~ ~ - ~ - ~ _ ~ ~ _ ~  

2 - - - T m -  _ - -1 m I - m  -In- 41- I -  n -  u _rim _nn~ 

-- XYZ only 1 

1 . . . . .  XYZ and B [ 

l 0 i i i i F i P i ~ / 
0 2 4 6 8 10 12 14 16 18 20 

Cycle Number 

Fig. 1. The drop in the value of the function that is minimized in 
refinement over 20 cycles of refinement. Four different methods 
of minimization are compared. In some test runs (solid lines) 
only the positional parameters were varied while in the rest 
(broken lines) both the positional and thermal parameters were 
varied. The function is ~ [Fo(hkl) - Fc(hkl)] 2 after the Fo's and 
Fc's have been scaled to each other, plus the sum of the geometry 
deviation terms. The methods represented with triangles required 
18.5 min of CPU time per cycle on a VAX 3600 computer. The 
methods represented with squares required the additional calcu- 
lation of curvatures and took 22 rain per cycle. This plot demon- 
strates that the conjugate-direction method produces a lower 
function value for a given number of cycles of refinement. 

in h igher  local  min ima .  For  the con juga te -g rad ien t  
or  the con juga te -d i r ec t ion  me thods  to work  they  mus t  
be close e n o u g h  to a m i n i m u m  tha t  the h ighe r -o rde r  
terms of  the  Taylor-ser ies  e x p a n s i o n  are ins ignif icant .  
Each  m e t h o d  will p roceed  to the m i n i m u m  of  the  
expans ion ,  which  is the local  m i n i m u m .  Tha t  
m i n i m u m  is the same for  the two me thods  because  
the func t ion  i tself  is u n c h a n g e d ,  only  the set o f  direc- 
t ions  to be searched  has  been  a l tered by the  new 
method .  Even tua l ly ,  the  con juga te -g rad ien t  or  
s teepes t -descent  m e t h o d  will descend  as low as the 
con juga te -d i r ec t ion  m e t h o d ;  it will s imply  take  m a n y  
more  cycles to get there.  Fig. 1 shows tha t  af ter  20 
cycles even the  new m e t h o d  has not  r eached  a 
m i n i m u m .  M e t h o d s  wi th  even greater  power  o f  con-  
vergence shou ld  be able  to p roduce  p a r a m e t e r  sets 
where  f ( x )  is even lower,  us ing af fordable  a m o u n t s  
o f  c o m p u t e r  t ime. 

This  work  was suppo r t ed  in par t  by grants  to 
Professor  B. W. Mat thews  f rom the N I H  (GM20066)  
and  the Luci l le  P. M a r k e y  Cha r i t ab l e  Trust .  
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